近红外光谱仪在常规光纤中有良好的传输特性,且其仪器较简单、分析速度快、非破坏性和样品制备量小、几乎适合各类样品分析、多组分多通道同时测定等特点,成为在线分析仪表中的一枝奇葩。近几年,随着化学计量学、光纤和计算机技术的发展,近红外光谱仪技术正以惊人的速度应用于包括农牧、食品、化工、石化、制药、烟草等在内的许多领域,为科研、教学以及生产过程控制提供了一个十分广阔的使用空间。
近红外光谱仪分析方法包括校正和预测两个过程:
(1)在校正过程中,收集一定量有代表性的样品,在测量其光谱图的同时,根据需要使用有关标准分析方法进行测量,得到样品的各种质量参数,称之为参考数据。通过化学计量学对光谱进行处理,并将其与参考数据关联,这样在光谱图和其参考数据之间建立起一一对应映射关系,通常称之为模型。
虽然建立模型所使用的样本数目很有限,但通过化学计量学处理得到的模型应具有较强的普适性。近红外光谱仪对于建立模型所使用的校正方法视样品光谱与待分析的性质关系不同而异,常用的有多元线性回归,主成分回归,偏小二乘,人工神经网络和拓扑方法等。显然,模型所适用的范围越宽越好,但是模型的范围大小与建立模型所使用的校正方法有关,与待测的性质数据有关,还与测量所要求达到的分析精度范围有关。实际应用中,建立模型都是通过化学计量学软件实现的,并且有严格的规范。
(2)在预测过程中,首先使用近红外光谱仪测定待测样品的光谱图,通过软件自动对模型库进行检索,选择正确模型计算待测质量参数。